Dear Colleagues,

Welcome to the third edition of the EURAXESS ASEAN quarterly newsletter 2016.

Southeast Asia has almost doubled its share of the world's research papers over a 10-year period. International collaboration plays a major role in the publication output of the ASEAN region. In our Briefing section we summarise some of the findings of a recent SEA-EU-NET-led study.

International collaboration and mobility are the drivers of scientific advances. The EU-funded Marie Skłodowska-Curie Actions (MSCA) aim at enhancing the creative and innovative potential of experienced researchers through advanced training and international mobility. The MSCA Individual Fellowships offer great opportunities for ASEAN-based researchers to conduct research in Europe. Two bloggers share their tips and advice on how to secure the prestigious MSCA Fellowship in our Hot Topics Section.

This autumn, EURAXESS ASEAN will also be hosting a series of workshops across ASEAN as part of our annual ‘European Research Day’. This year’s workshop series will focus on effective proposal writing for calls under the Marie Sklodowska-Curie Actions. Find out more on what we have in store in our round-up In case you Missed it.

We hope you enjoy reading our newsletter, and welcome your feedback.

Your EURAXESS Links ASEAN team
Contents

1 Briefings: EU-ASEAN Research ties3
2 IN FOCUS: EURAXESS Member Germany: A global leader in R&D6
3 Hot Topic: How to apply for a (Marie Sklodowska-Curie) post doc grant?13
4 In Case You Missed IT... ...18
1 Briefings: EU-ASEAN Research ties

A recent survey conducted by the IP and Science Unit of Thomson Reuters revealed that Southeast Asia has almost doubled its share of the world’s research papers over a 10-year period, and increased its patenting activity by 40% in the past three years. Collaboration with international research partners, including the 28 Member States of the European Union (EU 28) and the Associated Countries (AC) has played an important role in this development. A research team of the EU-funded SEA-EU-NET project carried out a study from 2014 to 2016, assessing the research output in ASEAN Member States by combining Web of Science and Scopus statistics. The following is a summary of its “Co-publication analysis among ASEAN countries and their collaboration with the 28 EU Member Countries and Associated Countries” report.

In the examined time span of 2004 to 2014, the overall ASEAN scientific output in terms of scholarly publications amounted to ca. 550,000. The growth of

1 The full report can be downloaded here: http://stateofinnovation.thomsonreuters.com/asean-an-emerging-hub-in-research-and-innovation
annual output has been striking in this decade: In 2004, around 23,000 publications with ASEAN-based authors were indexed in the citation databases. In 2014, it was 80,000. **Output thus more than tripled** (to a certain extent this also has to do with improved database coverage of local journals).

Out of all ASEAN countries, **Singapore (SG) has the highest number of publications** (Singapore-based authors are involved in 34% of all ASEAN output). On the other hand, **Malaysia (MY) is growing fastest in terms of its publication output since 2004 and now has the highest annual publication output in the region**. Differences in annual output of the ASEAN Member States have increased 2004-2014, which reflects different levels in R&D investment.

International collaboration plays a major role in the publication output of the ASEAN region. Overall, around 39% of the publications in ASEAN are international co-publications. In the most recent years, the share has been slightly above 40%. **Globally, the EU is the strongest partner in co-publication collaboration. 32% of all international co-publications (and 13% of all publications) in ASEAN feature at least one EU-based co-author. Other important co-publication partners are the USA, China, Japan, Australia, and India.**

International collaboration shares vary considerably among the ASEAN Member States. 66% of publications with Vietnam-based authors involve at least one international co-author. In the Philippines, it's 55% of the publications, in Thailand only 38%.

As regards the research areas in Southeast Asian publication output, strongest in terms of number of national publications as well as international co-publications are **Clinical Medicine, Information & Communication Technologies (ICTs), and Engineering**. These thematic output patterns are fairly consistent with global

For more details on the SEA-EU-NET project please click [here](http://ec.europa.eu/euraxess).
patterns with the exception of a greater relevance of ICTs in Southeast Asian output compared to global output.

The analysis of thematic patterns in output becomes more fruitful when combined with the analysis of geographic patterns. In the case of Clinical Medicine, the strongest intra-ASEAN ties are Malaysia-Singapore, Thailand-Singapore, and Malaysia-Thailand. The strongest international co-publications in this field were recorded for Thailand-USA, Thailand-EU, and Singapore-Australia. Clinical Medicine is almost always at the top of each country’s co-publication ties; exceptions are Biology and Earth and Environmental Sciences in case of Indonesia-Germany, Physics and Astronomy in case of Vietnam-Germany, and Biology as well as Chemistry in case of Myanmar-Germany. Another noteworthy exception on the intra-ASEAN level is Malaysia-Indonesia, where Clinical medicine is considerably weaker than in other country ties. In case of both Engineering and Information & Communication Technologies, the strongest intra-ASEAN ties are attributed to Indonesia-Malaysia and Malaysia-Singapore (other country ties are far behind their output level), the strongest international ties to Singapore-China, Singapore-USA, and Singapore-EU.

If you would like to find out more please visit https://sea-eu.net/ or contact the authors directly.
EURAXESS – Researchers in Motion is an initiative of the European Research Area (ERA) that addresses barriers to the mobility of researchers and seeks to enhance their career development. This pan-European effort is currently supported by 40 countries. Here, we focus on Germany.

Facts & Figures

- Research and innovation are the cornerstones of the future of the German economy. Generous public funding programmes allow German higher education institutions, research institutions and companies to cooperate with foreign partners. Vice versa, excellent research and innovation conditions in Germany attract partners from all over the world.

- Keys to the success of the German R&D system are the autonomy of universities and non-university research institutions in the identification of research topics and methods in the area of innovative basic research, close links to the industry to carry out cutting-edge applied research and the openness to international cooperation.

- The German education system provides English run academic courses in nearly all fields, where students can benefit from teaching enriched by the lecturer’s own experience in topical research and international networks.

- The public and private sectors have made a significant commitment to spend around three per cent of national GDP per year on R&D activity. This amounted to approximately €84 billion R&D spending in 2014; two-third is spent by the private sector.
Germany’s R&D landscape is characterised by a close cooperation between science and economy. It is based on the dense and decentralised network of more than 420 universities, technical colleges and universities of applied sciences.

In worldwide comparison, Germany holds a unique position thanks to strong research communities in basic and applied research.

There exist more than 300 non-university research institutions, among which the institutes of the Max-Planck-Gesellschaft, the Helmholtz Gemeinschaft and the Fraunhofer Gesellschaft.

- Key sectors of R&D in Germany are defined by the new High-Tech Strategy which was published in 2014, namely “Digital Economy and Society”, “Sustainable Economy and Energy”, “Innovative Workplace”, “Healthy Living”, “Intelligent Mobility” and “Civil Security”.

The new High-Tech Strategy stands for the aim of moving Germany forward on its way to becoming a worldwide innovation leader.

Where can I find out more?

Research in Germany

The “Research in Germany” portal provides an overview of the German research landscape and funding system along with interesting news from the scientific world. Additionally, practical information supports foreign scientists and researchers in their decision to collaborate with German research organisations or to complete a research stay in Germany.

- Research in Germany Facebook page.
- Brochures for download (e.g. "German Funding Programmes for Scientists and Researchers", FAQs – Preparing a successful research stay in Germany, About the German Research Landscape, The German Research Landscape - Who does research in Germany?)

PhDGermany – open PhD positions

Database maintained by the German Academic Exchange Service (DAAD) listing job openings / PhD positions for doctoral students.

Research Explorer

The Research Explorer contains over 23,000 institutes at German universities and non-university research institutions, searchable by geographic location, subject and other structural criteria.
DAAD Funding Database

The funding database of the German Academic Exchange Service (DAAD) lists DAAD funding schemes for foreign students, graduates and postdocs as well as on funding offered by other selected organisations.

List of Research Performing Organisations

Universities, Fraunhofer-Gesellschaft, Helmholtz Association, Leibniz Association, Max Planck Society, Academies of Sciences and Humanities, Federal Institutions, Länder Institutions, Companies & Industrial Research, German Federation of Industrial Research Associations (AiF), Networks and Clusters, Research Infrastructures

Collaboration in science, research and innovation between Germany and ASEAN

In general, collaboration in science, research and innovation between Germany and the Association of Southeast Asian Nations (ASEAN) falls under the roof of the ”Internationalization Strategy” of the German Government. Since the ten member states of ASEAN – Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand and Vietnam – are far from being a homogenous group of states, the collaboration varies from country to country. The ASEAN member states do not only differ in size, population, urbanization, religion, economic performance or stage of development. Most significant with regard to science, research and innovation are the differences of the quality of the systems of education and science as well as of the R&D and innovation performances. Therefore implementing a one size fits all science, research and innovation policy for all ten ASEAN member states would simply be impossible. To tackle this challenge Germany signed agreements on cooperation in the field of scientific research and technological development with selected member states such as Indonesia in 1979 or Singapore in 1994. Some ASEAN member states – like Thailand or Singapore for example – participate in joint mobility programs aiming at facilitating scientific cooperation or have developed joint research structures and programs which can highlight the collaboration in the field of science, research and innovation with Germany.
Germany and Singapore for example signed a Memorandum of Understanding on cooperation in the field of scientific research and technological development in 1994, since the scientific cooperation between Germany and Singapore is a major pillar of the bilateral relations. With TUM Asia, an offshore campus of the Technische Universität München (TUM), Singapore was the first destination for a German university to open a campus abroad. Besides pure scientific cooperation the German collaboration with Singaporean universities also aims at offering dual education courses “Made in Germany” which cater primarily to the needs of the more than 1500 German companies in Singapore.

The collaboration with Thailand focuses on health science, in particular on infectious diseases, agriculture and engineering. In the field of engineering “The Sirindhorn International Thai-German Graduate School of Engineering” (TGGS), an autonomous International Graduate School of Engineering within King Mongkut’s University of Technology North Bangkok (KMUTNB) can serve as a perfect example for our bilateral scientific collaboration. TGGS is the result of intense cooperation between KMUTNB and Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen).

In Malaysia, the cooperation between German and Malaysian universities continues to grow and currently numbers more than 80 partnerships. In 2014, an additional element of R&D cooperation was established when the Steinbeis Malaysia Centre was founded. It has signed MoUs with several local R&D institutions and is currently establishing a network with companies active in this field. In more practical terms, the German Malaysian Institute (founded 1992) offers mainly technical education to Malaysian students and is part of the Dual Vocational Education program which was started last year by the Malaysian-German Chamber of Commerce and Industry (AHK).

The Vietnamese-German University was founded in 2008 and covers engineering and natural sciences. Besides these fields, collaboration between Germany and Vietnam narrows the scope on water and environmental technology as well as bioeconomy.

From a German scientific point of view, Indonesia with its unique flora and fauna is of special interest in the field of biotechnology. A particular focus is also directed on tsunami research projects.

This broad spectrum of various scientific fields in the collaboration with the ASEAN member states clearly highlights the fact that the German-ASEAN scientific collaboration is always adapted to the respective ASEAN member state to be most fruitful for both parties.

Sascha A. Kienzle

Head of Science and Technology Department, German Embassy Singapore
Fostering bilateral research collaboration: Interview with Sascha Kienzle

Sascha Kienzle is Head of the Science and Technology Department at the German Embassy in Singapore.

Sascha, could you please tell us about your roles and responsibilities at the German Embassy in Singapore.

As Head of the Science and Technology Department at the German Embassy in Singapore my major task is to facilitate the scientific exchange between Singapore and Germany. We deal mainly with issues of research and technology policies and inform about the structures of the scientific landscapes in both countries. Since I am also in charge of science and technology at the German Embassy in Bangkok, I am responsible for increasing the exchange in science, research and technology between Thailand and Germany as well.

You have been in Singapore for two years now. What has struck you most about the pace of development in science, technology and innovation in Singapore and Thailand?

Both countries consider science, technology and innovation as being crucial for the social and economic development. Many resources – personal and financial, as well as time and effort – are pumped into the scientific sector. The result is an extraordinary pace of development in science, technology and innovation and the creation of a vibrant scientific ecosystem, which attracts foreign talent. Therefore I am delighted to see a rising number of German scientists exploring the region and establishing collaborations with Singapore and Thailand.

Please let us know about some research success stories involving Germany and countries in the region that you have been involved with during your time here.

In April 2016 Singapore’s National Research Foundation (NRF) gave green light to phase II of TUM CREATE, a research cluster of the Technical University of Munich (TUM) in Singapore. Phase I, which started in 2011, focused on electromobility and resulted in the development of EVA, an award-winning electric taxi for tropical megacities. EVA was designed and built completely in Singapore with a huge number of German researchers involved in the project. Phase II of the TUM CREATE project, which will also be founded by NRF for 5 years, will now focus on the ultimate public transport system including research on autonomous vehicles.
Currently we are also working on increasing the presence of Fraunhofer, a leading German research organization, in the region. With the Fraunhofer IDM@NTU Project Centre, the Fraunhofer Institute for Computer Graphics Research IGD already established its collaboration with Singapore in the field of Interactive Digital Media. With the recent signing of a Memorandum of Understanding between the Fraunhofer Institute for Ceramic Technologies and Systems and the Singapore Centre for 3D Printing we are also pushing things forward in one of the most promising future technologies.

Where do you see the greatest opportunities for increased cooperation in science, technology and innovation between Germany and the region?

As a worldwide leader for Green Technologies, Germany has a lot to offer for the region. The need for sustainable technologies has the potential to significantly increase the cooperation in science, technology and innovation between Germany and Singapore or Thailand.

Aging society is not only a problem which we are facing in Germany. To tackle this problem we need to find smart solutions within the health care sector and technology will play an important role. Health and biomedical science is an area in which we will see an increasing cooperation in the future.

Industry 4.0 – a term coined by the German government describing the factory of the future – will completely transform the way goods are produced. Robotics and smart factories will have a drastic impact on production. To remain competitive the industry will have to cooperate with research institutes and develop and implement new technologies. This revolution of the production process will be a challenge for all economies worldwide. But at the same time it has the opportunity for increased scientific cooperation.

And what other challenges do you see?

Declining economic growth might tempt national governments to reduce spending for education and research, which could have negative long term effects. It is also crucial to convince the private sector to increase its investments in R&D. In Germany the private sector contributed roughly two thirds of the total budget of 84 billion Euros spent on R&D in 2014. The public and private sectors in Germany have made a significant commitment to spend three per cent of national GDP per year on R&D to reach the EU’s 2020 target. With 2.9 percent of GDP spent for R&D in Germany in 2014 the challenge is to continuously increase this number.

We understand that your posting in Singapore has been extended for another year. What will you be focusing on?

Singapore, with its test-bed status and its vibrant R&D environment, is of extraordinary interest for German researchers. The Science and Technology Department will place a strong focus on increasing the exchange of researchers. To facilitate the exchange and to bring in researchers from Germany, the German
Academic Exchange Service (DAAD) in cooperation with the Singapore campus of TUM called TUM Asia and the German Embassy organizes lecture series and symposia on topics of high relevance for Germany and Singapore. We will also welcome several high profile delegations – from government sector and the academia – with a strong focus on science and research.

Thank you Sascha!

About

Sascha Kienzle heads the Science and Technology Department at the Germany embassy in Singapore since 2014. He holds a postgraduate degree in political sciences from the Munich School for Political Sciences (2010) and graduated from the Academy of the Federal Foreign Office (Germany) in 2013. Sascha is currently enrolled as a doctoral candidate at the Universität der Bundeswehr in Munich, Germany. His career also includes a successful stint as a television actor (2003 – 2006).
3 Hot Topic: How to apply for a (Marie Sklodowska-Curie) post doc grant?

This article has been written by two young cognitive scientists, Christina Bergmann and Sho Tsuji, who share their insight and advice on their blog Cogtales. They are both currently conducting postdoctoral research supported by a Marie Sklodowska-Curie grant. You can also follow them on twitter.

First, check the eligibility and formal criteria

Post doc grants usually fund only between 5 and 20 percent of applications, so they are happy when they can weed out applications before even sending them out to reviewers. Avoid being one of those that don’t even get feedback on their work by checking carefully whether you and your host institution are eligible and make sure you fulfil all formal criteria (number of pages or word limits, are all sections and appendices there, is the font correct and not too small, etc).

For instance, to even be able to apply for a Marie Skłodowska-Curie Individual Fellowship you need to be an “Experienced Researcher”, which is defined as being in possession of a doctoral degree or have at least four years of full-time equivalent research experience at the deadline for the submission of proposals. It sounds simple, but is very important and thus seems to not be considered enough.

Take the non-science parts very seriously

If you look at how Marie Sklodowska-Curie grant proposals are evaluated, most of the points go to aspects of the proposal that have seemingly nothing to do with the science you want to do. There are many reasons for that, for example that it’s a training grant and you should be sure to describe how the experience will help you grow as a scientist. They also want to make sure that the money is well spent by asking you to supply a lot of details about where you want to go and what kind of support you will receive there, both scientifically and in terms of admin, equipment, etc.

Sho will give you a concrete example based on her own experience: “I applied unsuccessfully once before getting the grant. I got full points on the research parts but lost points on “Training” (note that this was still under the previous framework, thus the structure is slightly different now – elements of the previous “Training” part are now found both in “Excellence” and “Impact”). The main negative feedback I got was:
(1) The proposal does not give full evidence of how the relevant training courses will be included in the candidate’s training plan.

(2) The provision of training to develop the applicant’s complementary skills, such as project management, is not sufficiently detailed in the proposal.

While this might seem minor, these two points transformed the proposal from an A-ranks to not even a B-, but a C-, which is one step from the worst!

As to (1): In the old proposal, I had mentioned several training activities (learning new data acquisition and analysis techniques), but not explicitly said how that would benefit me in the future (thinking that would be obvious). So in the new proposal, I basically just added one sentence to each of the skills I listed, saying things like “This skill is crucial for my future research since knowing how to use technique A is the only way I will be able to assess X in infants”; “New skill B in combination with my old skill C will make me one of the pioneers of doing Y in Europe”.

As to (2), I had mentioned I would gain project management skills simply by executing my research project. I had been more specific with other skills, and that was simple enough: For instance, I mentioned I’d improve my writing skills by preparing journal articles together with my supervisor. But only for not specifically saying how I would gain project management skills I lost crucial points. So for my second try, I described several task coordination scenarios that would come up during my project, for instance coordinating multiple home visits at babies’ homes, and linked that to the acquisition of project management skills. And voila – that worked!”

Take time and ask for a lot of feedback

A brilliant, succinct, and impactful research proposal, like most writing, is rarely churned out a week before the deadline. Do take time, among many benefits this allows you to look back after a week of doing something else (and that includes vacation, you deserve it) and spot inconsistencies, omissions, and generally things to be improved.

If you know people who previously applied for the same grant, ask them for feedback. Ideally, get also people on board who are not in your core research field, because the evaluators won’t be just from the small pool of your close colleagues. They often have a new perspective and will help you improve your proposal further, making it clear even for a non-expert.

There are also often dedicated *grant advisors*, either affiliated to foundations within your home or target country or at your current / future institution. They often also offer training sessions, and are usually happy to read your proposal with an eye on the formal aspects (see previous points, they matter a lot). In addition, when contacting a grant advisor from your target institution, they might be able to share previous successful proposals. Do look at them carefully, even if they come
from organic chemistry and you care more about applied psychology. For example, details about the host institution can often be re-used.

Finally, Sho and I exchanged proposals, because there is no direct competition. The X best ones will be funded, but they had no problem giving 3 grants to our host institution in our round, and none in the year before. Someone who is in the same boat, knows the guidelines as well as you, and still possesses a fresh pair of eyes can be incredibly useful. We helped and inspired each other, for example when describing our host lab; the facts about this lab don’t change so we could use the same information and split the work of finding out what, who, where, and when. As you see, this strategy was successful in our case.

Don’t despair when confronted with very confusing language and an obscure submission system

The text in the documents provided to applicants, especially this template

The text in the documents provided to applicants, especially this template

describing the different subcategories that you are supposed to elaborate on, can be very opaque. I asked professors at my target institution and did not receive the same interpretation twice. So what information goes where? This was especially tricky for us since they had just restructured the grant when Sho and I applied. So we could not simply look at proposals that our colleagues had kindly shared from previous years. Here, too, it can be extremely useful to talk to someone in the same boat and figure this all out together, and to ask some external grant advisor for additional feedback.

But even after a lot of asking around and discussing, what goes where stayed opaque in many cases. Our strategy there was in general to try to implement something from what everyone said – so write in a way that both professor A and professor B would be satisfied with. Within the place constraints, better repeat than leave out – after all, if one reviewer expects a certain element in Part A, she might still deduct points even if you mention that element in Part B and therefore left it out in A.

It might also take some time to get familiar with the submission system, do not postpone this bit to the last minute, either. Usually, right before the deadline is the busiest time for the system anyhow and it will be slow to react. So ideally have everything ready and just clicked click, submit. As we wrote earlier, not all messages are as clear as we’d like them to be within the system, as in the documents. Take your time, ask someone else, and don’t panic.

Some additional bits that might be useful

- A figure says more than 1000 words, so if you can add one to the science part, I’d recommend doing so.

- Last time I checked they did not have strict formal requirements for references. I added author names, years, and journal (incl issue/volume/number/pages) as footnotes and found this very space efficient

Christina and Sho are Marie Curie Fellows.
About the Marie-Sklodowska Curie Actions Individual Fellowships

What Is it?

Individual Fellowships belong to the Marie Skłodowska-Curie Actions (MSCA) under Horizon 2020, the European Framework Program for Research and Innovation. Individual fellowships are either European Fellowships or Global Fellowships. Global Fellowships offer the opportunity of ASEAN-based research institutions to host a European fellow. European Fellowships are an opportunity for ASEAN researchers to work in research labs in Europe for up to two years.

What is the aim of MSCA-IF?

The Marie Skłodowska-Curie Individual Fellowships aim at enhancing the creative and innovative potential of experienced researchers (postdocs) through advanced training and international and intersectoral mobility.

Who can apply?

European fellowships are awarded to the most promising researchers of any nationality who want to benefit from advanced training in Europe (mobility rules). The host organisation (academic or nonacademic) in Europe employs the awarded researcher. Applicants either hold a PhD degree or have at least four years of full-time equivalent research experience.

Why should I apply?

You can expand and strengthen your network and gain new expertise through advanced training and mobility.

How does it work?

Proposals are submitted jointly with a "host" organisation in Europe and you as the researcher. You, the researcher, develop the proposal in cooperation with a European organisation that would be willing to host you. Host organizations can be universities, research centres or companies.

How can I apply?

First, find the right call on the Horizon 2020 Participant Portal here. Then, inform yourself and read the important documents (Guide for Applicants and Work Programme). For questions, please contact asean@euraxess.net.

When can I apply?

The next MSCA-IF call for proposals will open on 11 April 2017 with a deadline of 14 September 2017. More information here.
EURAXESS Reseach Day 2016: “Effective Proposal Preparation for the Marie Skłodowska-Curie Actions”

The European Commission's Marie Skłodowska-Curie Actions (MSCA) support research training and career development focused on innovation skills. The programme funds worldwide and cross-sector mobility that implements excellent research in any field. There are MSCA grants for all stages of a researcher's career, from PhD candidates to highly experienced researchers.

This regional series of one-day workshops will provide detailed information on the eligibility and application criteria for the MSCA Individual Fellowships and the MSCA Research and Innovation Staff Exchange (RISE).

Hands-on training led by a European trainer will focus on:

- Proposal structure
- Partner Identification
- Evaluation
- Financial aspects
- Review of sample proposals

This workshop is open to researchers planning to apply to the 2017 Marie-Curie Individual Fellowship (IF) Call and the 2017 Research and Innovation Staff Exchange (RISE) Call.

Registration is required. For details on registration join us on Facebook.
4 In Case You Missed IT...

Europe Leads 2016 Global Innovation Index: Switzerland, Sweden, Finland, and the UK in the Top Five

Switzerland, Sweden, the United Kingdom, the United States of America, Finland and Singapore lead the 2016 rankings in the Global Innovation Index, released on August 15 by Cornell University, INSEAD and the World Intellectual Property Organization (WIPO). This year China joins the ranks of the world’s 25 most-innovative economies which is the first time a middle-income country has joined the highly developed economies that have historically dominated the top of the Global Innovation Index (GII) throughout its nine years of surveying the innovative capacity of 100-plus countries across the globe. More information about this report here.

EURAXESS Members in Focus: Slovakia

40 European countries are part of the EURAXESS network. Here we focus on Slovakia, a young and dynamic country offering an increasing number of opportunities to carry out excellent research and to turn it to practical application or business ideas. The country file can be accessed here.

Horizon 2020 Information event to take place in Kuala Lumpur, Malaysia on 22 November 2016

EURAXESS ASEAN is partnering with the EUMCCI and the EU Delegation Malaysia in the organisation of an information event introducing European funding & fellowship programme to the Malaysian research community. This event is scheduled to take place on Tuesday, 22 November (8.30 - 5.30) at Nottingham University Malaysia Campus. Highlights will include a keynote speech by Dr Juliane Sauer (EURecarch, Switzerland) on the opportunities for research collaboration under the EU Framework Programme for Research & Innovation Horizon 2020. Details will be announced shortly on the EURAXESS ASEAN Facebook page.

Stay updated on European Funding Opportunities – Sign Up for the EURAXESS ASEAN Flashnotes

EURAXESS Flashnotes are weekly information sheets on European research funding and mobility programmes.

To join our mailing list, please send us an email at asean@euraxess.org with the heading “join Flashnote mailing list”